In 2009, the Sun and the Earth passed through the equatorial plane of Jupiter and therefore the orbital planes of its main satellites. It was the equinox on Jupiter. This occurrence made mutual occultations and eclipses between the satellites possible. Experience has shown that the observations of such events provide accurate astrometric data able to bring new information on the dynamics of the Galilean satellites. Observations are made under the form of photometric measurements, but need to be made through the organization of a worldwide observation campaign maximizing the number and the quality of the data obtained. Aims. This work focuses on processing the complete database of photometric observations of the mutual occultations and eclipses of the Galilean satellites of Jupiter made during the international campaign in 2009. The final goal is to derive new accurate astrometric data. Methods. We used an accurate photometric model of mutual events adequate with the accuracy of the observation. Our original method was applied to derive astrometric data from photometric observations of mutual occultations and eclipses of the Galilean satellites of Jupiter. Results. We processed the 457 lightcurves obtained during the international campaign of photometric observations of the Galilean satellites of Jupiter in 2009. Compared with the theory, for successful observations, the r.m.s. of O–C residuals are equal to 45.8 mas and 81.1 mas in right ascension and declination, respectively; the mean O–C residuals are equal to –2 mas and –9 mas in right ascension and declination, respectively, for mutual occultations; and –6 mas and +1 mas in right ascension and declination, respectively, for mutual eclipses.
from HAL : Dernières publications http://ift.tt/1pxeyHF
from HAL : Dernières publications http://ift.tt/1pxeyHF
0 commentaires:
Enregistrer un commentaire