Drop Down MenusCSS Drop Down MenuPure CSS Dropdown Menu

vendredi 19 mai 2017

Numerical Study of Thermo-Mechanical Effects on the Viscous Damage Behavior of Rock Salt Caverns

Numerical Study of Thermo-Mechanical Effects on the Viscous Damage Behavior of Rock Salt Caverns Cheng, Zhu; Shen, Xianda; Arson, Chloé; Pouya, Ahmad Underground cavities in rock salt have received increased attention for the storage of oil, gas, and compressed air energy. In this study, the transition between secondary and tertiary creep in salt is determined by a micro-macro model: The initiation of grain breakage is correlated with the acceleration of viscoplastic deformation rate and with the initiation of damage at the macroscopic scale. Salt stiffness decreases when macroscopic damage increases, which allows predicting the evolution of the damage zone around salt caverns used for geological storage. After implementing the phenomenological model into the Finite Element Method (FEM) program POROFIS, two thermo-mechanical coupled stress paths are simulated to analyze stress concentrations and viscous damage around a 650-m-deep cavern in axisymmetric conditions. Numerical results indicate that, despite the pressurization or depressurization-induced temperature variation, internal gas temperature always tends to approach the primary surrounding rock mass value. The viscous deformation induced by thermo-mechanical couplings significantly affects the original stress field at the cavern wall and induces high damage at the most concave sections of the cavern. Results reveal the significant influences of idle time, gas pressure range, and injection and withdrawal cycles on stress, strain and temperature distributions in the vicinity of the cavern. More analyses are needed to confirm the influence of thermo-mechanical cycles of pressurization and depressurization, and to design long-term cavern operations. Copyright © 2017 by the American Rock Mechanics Association.; ARMA 17-353

from Theses online http://www.rssmix.com/

Ditulis Oleh : Unknown // 07:27
Kategori:

0 commentaires:

Enregistrer un commentaire

 

Blogger news

Blogroll

Fourni par Blogger.