We consider permutations of 1,2,...,n^2 whose longest monotone subsequence is of length n and are therefore extremal for the Erdős-Szekeres Theorem. Such permutations correspond via the Robinson-Schensted correspondence to pairs of square n× n Young tableaux. We show that all the bumping sequences are constant and therefore these permutations have a simple description in terms of the pair of square tableaux. We deduce a limit shape result for the plot of values of the typical such permutation, which in particular implies that the first value taken by such a permutation is with high probability (1+o(1))n^2/2.
from HAL : Dernières publications http://ift.tt/1DQQOoU
Home » Informatique » [hal-01184378] Permutations with short monotone subsequences
vendredi 14 août 2015
[hal-01184378] Permutations with short monotone subsequences
lainnya dari HAL : Dernières publications, Informatique
Ditulis Oleh : Unknown // 13:09
Kategori:
Informatique
Inscription à :
Publier les commentaires (Atom)
0 commentaires:
Enregistrer un commentaire