This paper illustrates the benefits of a nonlinear model based predictive control (NMPC) strategy for setpoint tracking control of an industrial crystallization process. A neural networks model is used as internal model to predict process outputs. An optimization problem is solved to compute future control actions taking into account real-time control objectives. Furthermore, a more suitable output variable is used for process control: the mass of crystals in the solution is used instead of the traditional electrical conductivity. The performance of the NMPC implementation is assessed via simulation results based on industrial data.
from HAL : Dernières publications http://ift.tt/1OlBMuJ
Home » Sciences de l'ingénieur » [hal-01202296] Nonlinear predictive control based on artificial neural network model for industrial crystallization
samedi 19 septembre 2015
[hal-01202296] Nonlinear predictive control based on artificial neural network model for industrial crystallization
lainnya dari HAL : Dernières publications, Sciences de l'ingénieur
Ditulis Oleh : Unknown // 07:53
Kategori:
Sciences de l'ingénieur
Inscription à :
Publier les commentaires (Atom)
0 commentaires:
Enregistrer un commentaire