Bounded-type 3-manifolds arise as combinatorially bounded gluings of irreducible 3-manifolds chosen from a finite list. We prove effective hyperbolization and effective rigidity for a broad class of 3-manifolds of bounded type and large gluing heights. Specifically, we show the existence and uniqueness of hyperbolic metrics on 3-manifolds of bounded type and large heights, and prove existence of a bilipschitz diffeomorphism to a combinatorial model described explicitly in terms of the list of irreducible manifolds, the topology of the identification, and the combinatorics of the gluing maps.
from HAL : Dernières publications http://ift.tt/29uK5Zf
Home » Sciences de l'ingénieur » [hal-01343314] Bounded combinatorics and uniform models for hyperbolic 3-manifolds
samedi 9 juillet 2016
[hal-01343314] Bounded combinatorics and uniform models for hyperbolic 3-manifolds
lainnya dari HAL : Dernières publications, Sciences de l'ingénieur
Ditulis Oleh : Unknown // 16:17
Kategori:
Sciences de l'ingénieur
Inscription à :
Publier les commentaires (Atom)
0 commentaires:
Enregistrer un commentaire